Mouse hippocampal GABAB1 but not GABAB2 subunit-containing receptor complex levels are paralleling retrieval in the multiple-T-maze

نویسندگان

  • Soheil K. Falsafi
  • Maryam Ghafari
  • András G. Miklósi
  • Ephrem Engidawork
  • Marion Gröger
  • Harald Höger
  • Gert Lubec
چکیده

GABAB receptors are heterodimeric G-protein coupled receptors known to be involved in learning and memory. Although a role for GABAB receptors in cognitive processes is evident, there is no information on hippocampal GABAB receptor complexes in a multiple T maze (MTM) task, a robust paradigm for evaluation of spatial learning. Trained or untrained (yoked control) C57BL/6J male mice (n = 10/group) were subjected to the MTM task and sacrificed 6 h following their performance. Hippocampi were taken, membrane proteins extracted and run on blue native PAGE followed by immunoblotting with specific antibodies against GABAB1, GABAB1a, and GABAB2. Immunoprecipitation with subsequent mass spectrometric identification of co-precipitates was carried out to show if GABAB1 and GABAB2 as well as other interacting proteins co-precipitate. An antibody shift assay (ASA) and a proximity ligation assay (PLA) were also used to see if the two GABAB subunits are present in the receptor complex. Single bands were observed on Western blots, each representing GABAB1, GABAB1a, or GABAB2 at an apparent molecular weight of approximately 100 kDa. Subsequently, densitometric analysis revealed that levels of GABAB1 and GABAB1a but not GABAB2- containing receptor complexes were significantly higher in trained than untrained groups. Immunoprecipitation followed by mass spectrometric studies confirmed the presence of GABAB1, GABAB2, calcium calmodulin kinases I and II, GluA1 and GluA2 as constituents of the complex. ASA and PLA also showed the presence of the two subunits of GABAB receptor within the complex. It is shown that increased levels of GABAB1 subunit-containing complexes are paralleling performance in a land maze.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lateral Diffusion of the GABAB Receptor Is Regulated by the GABAB 2

GABAB ( -aminobutyric acid, type B) is a heterodimeric G-protein-coupled receptor. The GABAB1 subunit, which contains an endoplasmic reticulum retention sequence, is only transported to the cell surface when it is associated with the GABAB2 subunit. Fluorescence recovery after photobleaching studies in transfected COS-7 cells and hippocampal neurons revealed that GABAB2 diffuses slowly within t...

متن کامل

Intron 4 Containing Novel GABAB1 Isoforms Impair GABAB Receptor Function

BACKGROUND Gamma-aminobutyric acid type B (GABAB) receptors decrease neural activity through G protein signaling. There are two subunits, GABAB1 and GABAB2. Alternative splicing provides GABAB1 with structural and functional diversity. cDNA microarrays showed strong signals from human brain RNA using GABAB1 intron 4 region probes. Therefore, we predicted the existence of novel splice variants. ...

متن کامل

Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor

γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system, and disturbances in the GABAergic system have been implicated in numerous neurological and neuropsychiatric diseases. The GABAB receptor is a heterodimeric class C G protein-coupled receptor (GPCR) consisting of GABAB1a/b and GABAB2 subunits. Two GABAB receptor ligand binding sites have been descri...

متن کامل

Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation.

Seven-transmembrane domain (7TM) receptors have important functions in cell-cell communication and can assemble into dimers or oligomers. Such complexes may allow specific functional cross-talk through trans-activation of interacting 7TMs, but this hypothesis requires further validation. Herein, we used the GABAB receptor, which is composed of two distinct subunits, GABAB1, which binds the agon...

متن کامل

Divorce of obligatory partners in pain: disruption of GABA(B) receptor heterodimers in neuralgia.

It is now well established that G protein-coupled receptors can exist not only as homodimers, but also as heterodimers or higher order oligomers. However, whether and how dimerization of the receptors is regulated is poorly understood. In this issue of The EMBO Journal, the team of Marc Landry provides evidence for an intriguing mechanism by which—under pathological conditions—GABAB receptor he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015